本站不再支持您的浏览器,360、sogou等浏览器请切换到极速模式,或升级您的浏览器到        更高版本!以获得更好的观看效果。关闭

团队队伍

首页 > 团队队伍 > 教师 > 大气污染与控制教研所 > 正文

大气污染与控制教研所

蒋靖坤

邮箱:jiangjk@tsinghua.edu.cn

电话:010-62781512

地点:bat365在线平台app中意bat365在线平台app环境节能楼

教育背景

2004 – 2008  圣路易斯华盛顿大学能源环境与化学工程系,博士

2002 – 2004  bat365在线平台app环境科学与工程系,硕士

1998 – 2002  bat365在线平台app环境科学与工程系,学士


工作履历

2017-至今    bat365官方网页版  长聘教授

2010-2016    bat365官方网页版 副研究员、准聘副教授、长聘副教授

2008 -2010   明尼苏达大学机械工程系,博士后

教学

2021-至今   理论与实践:空气(本科生)

2011-至今   气溶胶力学(研究生)

2013-2020   空气质量管理(本科生)

2020      新生导引课(本科生)

2010      纳米技术与工程,客座教师

2008      表面和胶体科学,助教

2005      传递现象,助教


学术兼职

2021 – 至今  Editorial Board, Results in Engineering
2020 – 至今  Editorial Board, Environmental Science & Technology Letters
2019 – 至今  Editorial Board, Environmental Research
2016 – 至今  Editor, Aerosol Science and Technology
2016 – 至今  环境模拟与污染控制国家重点联合实验室bat365在线平台app分室主任
2017 – 2018  Technical Program Committee, 2018 International Aerosol Conference
2017 – 2020  Guest editor, Atmospheric Chemistry & Physics
2016 – 2019  Editorial Board, Journal of Aerosol Science


奖励与荣誉

2020,ES&T Letters Excellence in Review Award
2020,教育部长江学者特聘教授
2019,中国化学会青年环境化学奖
2019,bat365在线平台app青年教师教学优秀奖
2019,bat365在线平台app先进工作者
2018,Smoluchowski Award
2017、2018、2019, bat365在线平台app年度教学优秀奖
2016,教育部青年长江学者
2016,北京市科技进步一等奖
2016,国家环境保护专业技术青年拔尖人才
2016,bat365在线平台app2015届&2016届毕业生心目中的好教师
2015,Asian Young Aerosol Scientist Award
2015,国家科技进步二等奖
2014,“万人计划”青年拔尖人才
2014,国家优秀青年科学基金
2014,教育部科技进步一等奖
2014,北京市科技新星
2012,bat365在线平台app第五届青年教师教学大赛二等奖(理工组)
2009,A&WMA Dissertation Award
2002,bat365在线平台app优良毕业生


研究领域

大气污染与控制、气溶胶科学与技术、颗粒物测量和成因


研究概况

大气霾化学,基金委基础科学中心项目,2022-2026;

我国东部超大城市群大气复合污染成因外场综合协同观测研究,基金委重大研究计划集成项目,2021-2023;

环境介质中的病毒识别与传播规律,基金委重大项目,2021-2025;

新冠病毒传播与环境的关系及风险防控,国务院联防联控机制科技攻关专项,2020-2021;

New particle formation and growth mechanism in atmospheric environments with high aerosol loading, Samsung Global Research Program, 2019-2025;

面向交通系统颗粒物排放监测的道路微站技术研究,政府间国际科技创新合作重点专项,2019-2022;

改进冷凝生长技术以提高1-3纳米大气颗粒物检测效率,基金委面上项目, 2019-2022;

多尺度高时空分辨率污染物排放及变化趋势,国家重点研发计划,2018-2021;

大气中Criegee中间体实时在线检测方法研发,基金委重点项目,2018-2022;

纳米颗粒物粒径分析技术,国家重点研发计划,2017-2020;

大气细颗粒物暴露导致慢阻肺的暴露组学与系统生物学研究,基金委重大研究计划重点项目,2017-2020;

大气颗粒有机物在线前处理及富集技术研发,国家重点研发计划,2016-2020;

大气污染化学,基金委优秀青年基金项目,2015-2017;

长三角区域大气重污染事件发生特征与形成途径研究,“十二五”科技支撑项目,2014-2017;

北京市民用燃煤PM2.5排放特征研究,北京市科技新星项目,2014-2017;

多介质复合污染与控制化学,基金委创新群体项目,2013-2018;

二次细粒子粒径分布、化学组成和光学特性在线测量系统,基金委国家重大科研仪器设备研制专项,2013-2017;

烟气系统中细颗粒物的转化机制与脱除增强的机理与方法,973项目,2013-2017;

钢铁窑炉烟尘PM2.5控制技术与装备,863项目,2013-2015;

大气二次颗粒物的化学组分特征及形成机制,基金委重大项目,2012-2016;

大气新粒子的生长机制研究, 基金委青年基金项目,2012-2014;

长江三角洲地区大气灰霾特征与控制途径研究, 环保公益性行业科研项目,2010-2013;

Clusters to Nanoparticles: Implications for Atmospheric Nucleation. U.S. National Science Foundation, 2005-2010;

Growth Rates of Freshly Nucleated Particles. U.S. Department of Energy, 2007-2010;

Relationship between Phsico-chemical Characteristics and Toxicological Properties of Nanomaterials. U.S. Air Force Office of Scientific Research, 2005-2009;

Full Development of Interactive Aerosol Program. U.S. National Science Foundation, 2005-2008;

Synthesis and Application of Magnetic Nanoparticles. U.S. National Science Foundation, 2003-2007;

燃烧源可吸入颗粒物源的物理化学特征及其成因研究,973计划项目,2002-2007。


学术成果

一、英文文章

2022

  1. Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities

    Nie, W.; Yan, C.; Huang, D. D.; Wang, Z.; Liu, Y.; Qiao, X.; Guo, Y.; Tian, L.; Zheng, P.; Xu, Z.; Li, Y.; Xu, Z.; Qi, X.; Sun, P.; Wang, J.; Zheng, F.; Li, X.; Yin, R.; Dallenbach, K. R.; Bianchi, F.; Petäjä, T.; Zhang, Y.; Wang, M.; Schervish, M.; Wang, S.; Qiao, L.; Wang, Q.; Zhou, M.; Wang, H.; Yu, C.; Yao, D.; Guo, H.; Ye, P.; Lee, S.; Li, Y. J.; Liu, Y.; Chi, X.; Kerminen, V.-M.; Ehn, M.; Donahue, N. M.; Wang, T.; Huang, C.; Kulmala, M.; Worsnop, D.; Jiang*, J.; Ding*, A.

    Nature Geoscience, 2022, 15: 255-261

  2. Measuring size distributions of atmospheric aerosols using natural air ions

    Li, Y.; X. Chen; J. Jiang*

    Aerosol Science and Technology, 2022, 56: 655-664

  3. Toxic potency-adjusted control of air pollution for solid fuel combustion

    Wu, D.; H. Zheng; Q. Li; L. Jin; R. Lyu; X. Ding; Y. Huo; B. Zhao; J. Jiang;J. Chen; X. Li; S. Wang

    Nature Energy, 2022, 7: 194-202

  4. Application of smog chambers in atmospheric process studies

    Chu, B.; T. Chen; Y. Liu; Q. Ma; Y. Mu; Y. Wang; J. Ma; P. Zhang; J. Liu; C. Liu; H. Gui; R. Hu; B. Hu; X. Wang; Y. Wang; J. Liu; P. Xie; J. Chen; Q. Liu; J. Jiang; J. Li; K. He; W. Liu; G. Jiang; J. Hao; H. He

    National Science Review, 2022, 9: nwab103

  5. Insufficient condensable organic vapors lead to slow growth of new particles in an urban environment

    Li, X.; Li, Y.; Cai, R.; Yan, C.; Qiao, X.; Guo, Y.; Deng, C.; Yin, R.; Chen, Y.; Li, Y.; Yao, L.; Sarnela, N.; Zhang, Y.; Petäjä, T.; Bianchi, F.; Liu, Y.; Kulmala, M.; Hao, J.; Smith*, J. N.; Jiang*, J

    Environ. Sci. & Technol., 2022, doi: 10.1021/acs.est.2c01566

  6. Variations and Sources of Organic Aerosol in Winter Beijing under Markedly Reduced Anthropogenic Activities During COVID-2019

    Hu, R.; S. Wang; H. Zheng; B. Zhao; C. Liang; X. Chang; Y. Jiang; R. Yin; J. Jiang; J. Hao

    Environ. Sci. & Technol., 2022, doi: 10.1021/acs.est.1021c05125

  7. Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving Conditions

    Yang, D.; S. Zhu; Y. Ma; L. Zhou; F. Zheng; L. Wang; J. Jiang; J. Zheng

    Environ. Sci. & Technol., 2022, 56: 5440-5447

  8. Measurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecules and larger particles

    Peng, C.; C. Deng; T. Lei; J. Zheng; J. Zhao; D. Wang; Z. Wu; L. Wang; Y. Chen; M. Liu; J. Jiang; A. Ye; M. Ge; W. Wang

    J Environ. Sci., 2022, doi: 10.1016/j.jes.2022.03.006

  9. Suggestion on further strengthening ultra-low emission standards for PM emission from coal-fired power plants in China

    Deng, J.; S. Wang; J. Zhang;Y. Zhang; J. Jiang; Y. Gu; T. Han; L. Feng; J. Gao; L. Duan

    J Environ. Sci., 2022, doi: 10.1016/j.jes.2022.03.007

  10. The contribution of new particle formation and subsequent growth to haze formation

    Kulmala, M.; R. Cai; D. Stolzenburg; Y. Zhou; L. Dada; Y. Guo; C. Yan; T. Petäjä; J. Jiang; V.-M. Kerminen

    Environmental Science: Atmospheres, 2022, 2: 352-361

  11. Detecting residual chemical disinfectant using an atomic Co–Nx–C anchored neuronal-like carbon catalyst modified amperometric sensor

    Li, Z.; G. Jiang; Y. Wang; M. Tan; Y. Cao; E. Tian; L. Zhang; X. Chen; M. Zhao; Y. Jiang; Y. Luo; Y. Zheng; Z. Ma; D. Wang; W. Fu; K. Liu; C. Tang*; J. Jiang*

    Environ. Sci.: Nano, 2022, 9: 1759-1769

  12. Large contribution of non-priority PAHs in atmospheric fine particles: Insights from time-resolved measurement and nontarget analysis

    An, Z.; X. Li; Y. Yuan; F. Duan; J. Jiang*

    Environment International, 2022, 163: 107193

  13. The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation

    Wang, J.; Xing, J.; Wang, S.; Mathur, R.; Wang, J.; Zhang, Y.; Liu, C.; Pleim, J.; Ding, D.; Chang, X.; Jiang, J.; Zhao, P.; Sahu, S. K.; Jin, Y.; Wong, D. C.; Hao, J

    Atmos. Chem. Phys., 2022, 22: 5147-5156

  14. Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing

    Hakala, S.; V. Vakkari; F. Bianchi; L. Dada; C. Deng; K. R. Dällenbach; Y. Fu; J. Jiang; J. Kangasluoma; J. Kujansuu; Y. Liu; T. Petäjä; L. Wang; C. Yan; M. Kulmala; P. Paasonen

    Environmental Science: Atmospheres, 2022, 2: 146-164

  15. Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases

    Zhang, D.; Y. Yang; M. Li; Y. Lu; Y. Liu; J. Jiang; R. Liu; J. Liu; X. Huang; G. Li; J. Qu

    Engineering, 2022, 10: 155-166

  16. Significant Contribution of Coarse Black Carbon Particles to Light Absorption in North China Plain

    Wang, J.; S. Wang; J. Wang; Y. Hua; C. Liu; J. Cai; Q. Xu; X. Xu; S. Jiang; G. Zheng; J. Jiang; R. Cai; W. Zhou; G. Chen; Y. Jin; Q. Zhang; J. Hao

    Environmental Science & Technology Letters, 2022, 9(2): 134-139

  17. Dynamic variations of phthalate esters in PM2.5 during a pollution episode

    Li, X.; Z. An; Y. Shen; Y. Yuan; F. Duan; J. Jiang*

    Science of The Total Environment, 2022, 810: 152269

  18. An online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plants

    Liu, A.; J. Yi; X. Ding; J. Deng; D. Wu; Y. Huo; J. Jiang; Q. Li; J. Chen

    Journal of Hazardous Materials, 2022, 428: 128221

  19. Cr-Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity

    Zhang, J.; F. Lv; Z. Li*; G. Jiang; M. Tan; M. Yuan; Q. Zhang; Y. Cao; H. Zheng; L. Zhang; C. Tang; W. Fu; C. Liu; K. Liu; L. Gu; J. Jiang*; G. Zhang*; S. Guo*

    Advanced Materials, 2022, 34(2): 2105276

  20. Evaluation of a cost-effective roadside sensor platform for identifying high emitters

    Shen, Y.; Q. Zhang; D. Wang; M. Tian; Q. Yu; J. Wang; H. Yin; S. Zhang; J. Hao; J. Jiang*

    Science of The Total Environment, 2022, 816: 151609

  21. Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters

    Kulmala, M.; D. Stolzenburg; L. Dada; R. Cai; J. Kontkanen; C. Yan; J. Kangasluoma; L. R. Ahonen; L. Gonzalez-Carracedo; J. Sulo; S. Tuovinen; C. Deng; Y. Li; K. Lehtipalo; K. E. J. Lehtinen; T. Petäjä; P. M. Winkler; J. Jiang; V.-M. Kerminen

    Journal of Aerosol Science, 2022, 159: 105878

  22. Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing

    Wang*, Y.; P. Clusius; C. Yan; K. Dällenbach; R. Yin; M. Wang; X.-C. He; B. Chu; Y. Lu; L. Dada; J. Kangasluoma; P. Rantala; C. Deng; Z. Lin; W. Wang; L. Yao; X. Fan; W. Du; J. Cai; L. Heikkinen; Y. J. Tham; Q. Zha; Z. Ling; H. Junninen; T. Petäjä; M. Ge; Y. Wang; H. He; D. R. Worsnop; V.-M. Kerminen; F. Bianchi; L. Wang; J. Jiang*; Y. Liu*; M. Boy; M. Ehn; N. M. Donahue; M. Kulmala*

    Environmental Science & Technology, 2022, 56: 770-778

  23. Emission characteristics of heavy metals from a typical copper smelting plant

    Zhang, J.; X. Sun; J. Deng; G. Li; Z. Li; J. Jiang; Q. Wu; L. Duan

    Journal of Hazardous Materials, 2022, 424: 127311

     

    2021

  24. Sulfuric acid-amine nucleation in urban Beijing

    Cai, R.; C. Yan; D. Yang; R. Yin; Y. Lu; C. Deng; Y. Fu; J. Ruan; X. Li; J. Kontkanen; Q. Zhang; J. Kangasluoma; Y. Ma; J.M. Hao; D.R. Worsnop; F. Bianchi; P. Paasonen; V.M. Kerminen; Y. Liu; L. Wang; J. Zheng; M. Kulmala; J. Jiang*

    Atmospheric Chemistry and Physics, 2021, 21(4): 2457-2468

  25. Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing

    Yin, R.; C. Yan; R. Cai; X. Li; J. Shen; Y. Lu; S. Schobesberger; Y. Fu; C. Deng; L. Wang; Y. Liu; J. Zheng; H. Xie; F. Bianchi; D. R. Worsnop; M. Kulmala; J. Jiang*

    Environmental Science & Technology, 2021, 55: 10994-11005

  26. Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment

    Qiao, X.; C. Yan*; X. Li; Y. Guo; R. Yin; C. Deng; C. Li; W. Nie; M. Wang; R. Cai; D. Huang; Z. Wang; L. Yao; D. R. Worsnop; F. Bianchi; Y. Liu; N. M. Donahue; M. Kulmala; J. Jiang*

    Environmental Science & Technology, 2021, 55: 13646-13656

  27. Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China

    Chu, B.; L. Dada; Y. Liu; L. Yao; Y. Wang; W. Du; J. Cai; K. R. Dällenbach; X. Chen; P. Simonen; Y. Zhou; C. Deng; Y. Fu; R. Yin; H. Li; X.-C. He; Z. Feng; C. Yan; J. Kangasluoma; F. Bianchi; J. Jiang; J. Kujansuu; V.-M. Kerminen; T. Petäjä; H. He; M. Kulmala

    Science of The Total Environment, 2021, 753: 142207

  28. Formation and growth of sub-3nm particles in megacities: impact of background aerosols

    Deng, C.; R. Cai; C. Yan; J. Zheng; J. Jiang*

    Faraday discussions, 2021, 226: 348-363

  29. Bioaerosol: A Key Vessel between Environment and Health

    Jiang, J.; M. Yao; J. Hwang ; C. Wang

    Frontiers of Environmental Science & Engineering, 2021, 15(3): 49

  30. An indicator for sulfuric acid–amine nucleation in atmospheric environments

    Cai, R.; C. Yan; D. R. Worsnop; F. Bianchi; V.-M. Kerminen; Y. Liu; L. Wang; J. Zheng; M. Kulmala; J. Jiang*

    Aerosol Science and Technology, 2021, 55: 1059-1069

  31. Composition of Ultrafine Particles in Urban Beijing: Measurement Using a Thermal Desorption Chemical Ionization Mass Spectrometer

    Li, X.; Y. Li; M.J. Lawler; J. Hao; J. Smith*; J. Jiang*

    Environmental science & technology, 2021, 55(5): 2859-2868

  32. Tracing the origins of SARS-CoV-2: lessons learned from the past

    Wang, Q.; H. Chen; Y. Shi; A. C. Hughes; W. J. Liu; J. Jiang; G. F. Gao; Y. Xue; Y. Tong

    Cell Research, 2021, 31: 1139-1141

  33. SARS-CoV-2 spillover into hospital outdoor environments

    Zhang, D.; X. Zhang; Y. Yang; X. Huang; J. Jiang; M. Li; H. Ling; J. Li;Y. Liu; G. Li; W. Li; C. Yi; T. Zhang; Y. Jiang; Y. Xiong; Z. He; X. Wang; S. Deng; P. Zhao; J. Qu

    Journal of Hazardous Materials Letters, 2021, 2: 100027

  34. Chronic Exposure to PM2.5 Nitrate, Sulfate, and Ammonium Causes Respiratory System Impairments in Mice

    Zhang, J.; H. Cheng; D. Wang; Y. Zhu; C. Yang; Y. Shen; J. Yu; Y. Li; S. Xu; S. Zhang; X. Song; Y. Zhou; J. Chen; J. Jiang; L. Fan; C. Wang; K. Hao

    Environmental science & technology, 2021, 55(5): 3081-3090

  35. Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution

    Zhang, J.; H. Cheng; D. Wang; Y. Zhu; C. Yang; Y. Shen; J. Yu; Y. Li; S. Xu; X. Song; Y. Zhou; J. Chen; L. Fan; J. Jiang; C. Wang; K. Hao

    Environmental Pollution, 2021, 280: 116951

  36. Improving data reliability: A quality control practice for low-cost PM2.5 sensor network

    Qiao, X.; Q. Zhang; D. Wang; J. Hao; J. Jiang*

    Science of The Total Environment, 2021, 779: 146381

  37. The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing New-Particle Formation in Beijing

    Yan, C.; R. Yin; Y. Lu; L. Dada; D. Yang; Y. Fu; J. Kontkanen; C. Deng; O. Garmash; J. Ruan; R. Baalbaki; M. Schervish; R. Cai; M. Bloss; T. Chan; T. Chen; Q. Chen; X. Chen; Y. Chen; B. Chu; K. Dällenbach; B. Foreback; X. He; L. Heikkinen; T. Jokinen; H. Junninen; J. Kangasluoma; T. Kokkonen; M. Kurppa; K. Lehtipalo; H. Li; H. Li; X. Li; Y. Liu; Q. Ma; P. Paasonen; P. Rantala; R.E. Pileci; A. Rusanen; N. Sarnela; P. Simonen; S. Wang; W. Wang; Y. Wang; M. Xue; G. Yang; L. Yao; Y. Zhou; J. Kujansuu; T. Petäjä; W. Nie; Y. Ma; M. Ge; H. He; N.M. Donahue; D.R. Worsnop; V.-M. Kerminen; L. Wang; Y. Liu*; J. Zheng*; M. Kulmala*; J. Jiang*; F. Bianchi*

    Geophysical Research Letters, 2021, 48(7): e2020GL091944

  38. Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?

    Kulmala, M.; L. Dada; K.R. Daellenbach; C. Yan; D. Stolzenburg; J. Kontkanen; E. Ezhova; S. Hakala; S. Tuovinen; T.V. Kokkonen; M. Kurppa; R. Cai; Y. Zhou; R. Yin; R. Baalbaki; T. Chan; B. Chu; C. Deng; Y. Fu; M. Ge; H. He; L. Heikkinen; H. Junninen; Y. Liu; Y. Lu; W. Nie; A. Rusanen; V. Vakkari; Y. Wang; G. Yang; L. Yao; J. Zheng; J. Kujansuu; J. Kangasluoma; T. Petaja; P. Paasonen; L. Jarvi; D. Worsnop; A. Ding; Y. Liu; L. Wang; J. Jiang; F. Bianchi; V.-M. Kerminen

    Faraday discussions, 2021, 226: 334-347

  39. Impacts of coagulation on the appearance time method for new particle growth rate evaluation and their corrections

    Cai, R.; C. Li; X.-C. He; C. Deng; Y. Lu; R. Yin; C. Yan; L. Wang; J. Jiang; M. Kulmala; J. Kangasluoma

    Atmospheric Chemistry and Physics, 2021, 21(3): 2287-2304

  40. Frontier review on comprehensive two-dimensional gas chromatography for measuring organic aerosol

    An, Z.; X. Li; Z. Shi; B.J. Williams; R.M. Harrison; J. Jiang*

    Journal of Hazardous Materials Letters, 2021, 2: 100013

  41. General discussion: Aerosol formation and growth; VOC sources and secondary organic aerosols

    Alam, M.S.; W. Bloss; J. Brean; P. Brimblecombe; C. Chan; Y. Chen; H. Coe; P. Fu; S. Gani; J. Hamilton; R. Harrison; J. Jiang; M. Kulmala; L. Lugon; G. McFiggans; A. Mehra; A. Milsom; B. Nelson; C. Pfrang; K. Sartelet; Z. Shi; D. Srivastava; G. Stewart; P. Styring; H. Su; D. van Pinxteren; E. Velasco; J.Z. Yu

    Faraday discussions, 2021, 226: 479-501

  42. Investigation of MOF-derived humidity-proof hierarchical porous carbon frameworks as highly-selective toluene absorbents and sensing materials

    Li, Z.; Y. Yuan; H. Wu; X. Li; M. Yuan; H. Wang; X. Wu; S. Liu; X. Zheng; M. Kim; H. Zheng; S. Rehman; G. Jiang; W. Fu; J. Jiang*

    Journal of Hazardous Materials, 2021, 411: 125034


    2020

  43. Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing

    Deng, C.; Y. Fu; L. Dada; C. Yan; R. Cai; D. Yang; Y. Zhou; R. Yin; Y. Lu; X. Li; X. Qiao; X. Fan; W. Nie; J. Kontkanen; J. Kangasluoma; B. Chu; A. Ding; V.-M. Kerminen; P. Paasonen; D.R. Worsnop; F. Bianchi; Y. Liu; J. Zheng; L. Wang; M. Kulmala*; J. Jiang*

    Environmental Science & Technology, 2020, 54: 8547-8557

  44. Quantifying the Deposition of Airborne Particulate Matter Pollution on Skin Using Elemental Markers

    Morgan, J.L.L.; A. Shauchuk; J.L. Meyers; A. Altemeier; X.H. Quo; M. Jones; E.D. Smith; J. Jiang

    Environmental Science & Technology, 2020, 54(24): 15958-15967

  45. Air pollutant emissions from coal-fired power plants in China over the past two decades

    Wang, G.; J. Deng; Y. Zhang; Q. Zhang; L. Duan; J. Hao; J. Jiang*

    Science of The Total Environment, 2020, 741: 140326

  46. Three-dimensional tomography reveals distinct morphological and optical properties of soot aggregates from coal-fired residential stoves in China

    Zhang, C.; W.R. Heinson; P. Liu; P. Beeler; Q. Li; J. Jiang; R.K. Chakrabarty

    Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254: 107184

  47. Unprecedented Ambient Sulfur Trioxide (SO3) Detection: Possible Formation Mechanism and Atmospheric Implications

    Yao, L.; X.L. Fan; C. Yan; T. Kurten; K.R. Daellenbach; C. Li; Y.H. Wang; Y.S. Guo; L. Dada; M.P. Rissanen; J. Cai; Y.J. Tham; Q.Z. Zha; S.J. Zhang; W. Du; M. Yu; F.X. Zheng; Y. Zhou; J. Kontkanen; T. Chan; J.L. Shen; J.T. Kujansuu; J. Kangasluoma; J. Jiang; L. Wang; D.R. Worsnop; T. Petaja; V.M. Kerminen; Y.C. Liu; B.W. Chu; H. He; M. Kulmala; F. Bianchi

    Environmental Science & Technology Letters, 2020, 7(11): 809-818

  48. A Sampler for Collecting Fine Particles into Liquid Suspensions

    Wang, D.; J. Jiang; J. Deng; Y. Li; J. Hao

    Aerosol and Air Quality Research, 2020, 20(3): 654-662

  49. Investigating the effectiveness of condensation sink based on heterogeneous nucleation theory

    Tuovinen, S.; J. Kontkanen; J. Jiang; M. Kulmala

    Journal of Aerosol Science, 2020, 149: 105613

  50. Size-Resolved Chemical Composition of Sub-20 nm Particles from Methanesulfonic Acid Reactions with Methylamine and Ammonia

    Perraud, V.; X. Li; J. Jiang; B.J. Finlayson-Pitts; J.N. Smith

    ACS Earth and Space Chemistry, 2020, 4(7): 1182-1194

  51. Ultrasonication to reduce particulate matter generated from bursting bubbles: A case study on zinc electrolysis

    Ma, Z.; J. Jiang; L. Duan; Z. Li; J. Deng; J. Li; R. Zhang; C. Zhou; F. Xu; L. Jiang; N. Duan

    Journal of Cleaner Production, 2020, 272: 122697

  52. Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain

    Ma, T.; H. Furutani; F. Duan; T. Kimoto; J. Jiang; Q. Zhang; X. Xu; Y. Wang; J. Gao; G. Geng; M. Li; S. Song; Y. Ma; F. Che; J. Wang; L. Zhu; T. Huang; M. Toyoda; K. He

    Atmos. Chem. Phys., 2020, 20(10): 5887-5897

  53. Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment

    Liu, Y.; C. Yan; Z. Feng; F. Zheng; X. Fan; Y. Zhang; C. Li; Y. Zhou; Z. Lin; Y. Guo; Y. Zhang; L. Ma; W. Zhou; Z. Liu; L. Dada; K. Dällenbach; J. Kontkanen; R. Cai; T. Chan; B. Chu; W. Du; L. Yao; Y. Wang; J. Cai; J. Kangasluoma; T. Kokkonen; J. Kujansuu; A. Rusanen; C. Deng; Y. Fu; R. Yin; X. Li; Y. Lu; Y. Liu; C. Lian; D. Yang; W. Wang; M. Ge;Y. Wang; D.R. Worsnop; H. Junninen; H. He; V.-M. Kerminen; J. Zheng; L. Wang; J. Jiang; T. Petäjä; F. Bianchi; M. Kulmala

    Big Earth Data, 2020, 4(3): 295-321

  54. Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing

    Li, X.X.; B. Zhao; W. Zhou; H.R. Shi; R.J. Yin; R.L. Cai; D.S. Yang; K. Dallenbach; C.J. Deng; Y.Y. Fu; X.H. Qiao; L. Wang; Y.C. Liu; C. Yan; M. Kulmala; J. Zheng; J.M. Hao; S.X. Wang; J. Jiang*

    Science of the Total Environment, 2020, 721: 9

  55. Wintertime Particulate Matter Decrease Buffered by Unfavorable Chemical Processes Despite Emissions Reductions in China

    Leung, D.M.; H. Shi; B. Zhao; J. Wang; E.M. Ding; Y. Gu; H. Zheng; G. Chen; K.-N. Liou; S. Wang; J.D. Fast; G. Zheng; J. Jiang; X. Li; and J.H. Jiang

    Geophysical Research Letters, 2020, 47: e2020GL087721

  56. Size-resolved particle number emissions in Beijing determined from measured particle size distributions

    Kontkanen, J.; C. Deng; Y. Fu; L. Dada; Y. Zhou; J. Cai; K.R. Daellenbach; S. Hakala; T.V. Kokkonen; Z. Lin; Y. Liu; Y. Wang; C. Yan; T. Petäjä; J. Jiang; M. Kulmala; P. Paasonen

    Atmos. Chem. Phys., 2020, 20: 11329-11348

  57. Overview of measurements and current instrumentation for 1–10 nm aerosol particle number size distributions

    Kangasluoma, J.; R. Cai; J. Jiang; C. Deng; D. Stolzenburg; L.R. Ahonen;T. Chan; Y. Fu; C. Kim; T.M. Laurila; Y. Zhou; L. Dada; J. Sulo; R.C. Flagan; M. Kulmala; T. Petäjä; K. Lehtipalo

    Journal of Aerosol Science, 2020, 148: 105584

  58. Transmission via aerosols: Plausible differences among emerging coronaviruses

    Jiang*, J.; Y. Vincent Fu; L. Liu; M. Kulmala

    Aerosol Science and Technology, 2020, 54: 865-868

  59. Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing

    Hu, R.; Q. Xu; S. Wang; Y. Hua; N. Bhattarai; J. Jiang; Y. Song; K.R. Daellenbach; L. Qi; A.S.H. Prevot; J. Hao

    Journal of Environmental Sciences, 2020, 95: 99-110

  60. Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations

    Dada, L.; I. Ylivinkka; R. Baalbaki; C. Li; Y. Guo; C. Yan; L. Yao; N. Sarnela; T. Jokinen; K.R. Daellenbach; R. Yin; C. Deng; B. Chu; T. Nieminen; Y. Wang; Z. Lin; R.C. Thakur; J. Kontkanen; D. Stolzenburg; M. Sipilä, T. Hussein; P. Paasonen; F. Bianchi; I. Salma; T. Weidinger; M. Pikridas; J. Sciare; J. Jiang; Y. Liu; T. Petäjä; V.M. Kerminen; M. Kulmala

    Atmos. Chem. Phys., 2020, 20: 11747-11766

  61. Comprehensive two-dimensional gas chromatography mass spectrometry with a solid-state thermal modulator for in-situ speciated measurement of organic aerosols

    An, Z.; H. Ren; M. Xue; X. Guan; J. Jiang*

    Journal of Chromatography A, 2020, 1625: 461336

  62. Evaluating Airborne Condensable Particulate Matter Measurement Methods in Typical Stationary Sources in China

    Wang, G.; Deng, J.; Zhang, Y.; Li, Y.; Ma, Z.; Hao, J.; Jiang*, J

    Environmental Science & Technology, 2020, 54: 1363-1371

  63. Significant ultrafine particle emissions from residential solid fuel combustion

    Wang, D.; Li, Q.; Shen, G.; Deng, J.; Zhou, W.; Hao, J.; Jiang*, J

    Science of The Total Environment, 2020, 715, 136992

  64. Models for estimating nanoparticle transmission efficiency through an adverse axial electric field

    Cai, R; J. Jiang*

    Aerosol Science and Technology, 2020, 54: 332-341

  65. Transmission of charged nanoparticles through the DMA adverse axial electric field and its improvement

    Cai, R.; Y. Zhou; J. Jiang*

    Aerosol Science and Technology, 2020, 54: 21-32

  66. A Cost-effective, Miniature Electrical Ultrafine Particle Sizer (mini- eUPS) for Ultrafine Particle (UFP) Monitoring Network

    Liu, Q.; D. Liu; X. Chen; Q. Zhang; J. Jiang; D.-R. Chen

    Aerosol and Air Quality Research, 2020, 20: 231-241

  67. Variation of size-segregated particle number concentrations in wintertime Beijing

    Zhou, Y.; Dada, L.; Liu, Y.; Fu, Y.; Kangasluoma, J.; Chan, T.; Yan, C.; Chu, B.; Daellenbach, K. R.; Bianchi, F.; Kokkonen, T. V.; Liu, Y.; Kujansuu, J.; Kerminen, V. M.; Petäjä, T.; Wang, L.; Jiang, J.; Kulmala, M

    Atmospheric Chemistry and Physics, 2020, 20: 1201-1216

  68. China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002

    Gao, M.; Liu, Z.; Zheng, B.; Ji, D.; Sherman, P.; Song, S.; Xin, J.; Liu, C.; Wang, Y.; Zhang, Q.; Xing, J.; Jiang, J.; Wang, Z.; Carmichael, G. R.; McElroy, M. B.

    Atmospheric Chemistry and Physics, 2020, 20: 1497-1505

  69. Cobalt Nanoparticles and Atomic Sites in Nitrogen-Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide

    Li, Z.; R. Liu; C. Tang; Z. Wang; X. Chen; Y. Jiang; C. Wang; Y. Yuan; W. Wang; D. Wang; S. Chen; X. Zhang; Q. Zhang; J. Jiang*

    Small, 2020, 16: 1902860


    2019

  70. Theoretical and experimental analysis of the core sampling method: Reducing diffusional losses in aerosol sampling line

    Fu, Y.; M. Xue; R. Cai; J. Kangasluoma; J. Jiang*

    Aerosol Science and Technology, 2019, 53: 793-801

  71. Few-layered mesoporous graphene for high-performance toluene adsorption and regeneration

    Wang, Y.; Z. Li; C. Tang; H. Ren; Q. Zhang; M. Xue; J. Xiong; D. Wang; Q. Yu; Z. He; F. Wei; J. Jiang*,

    Environmental Science: Nano, 2019, 6: 3113-3122

  72. A soft X-ray unipolar charger for ultrafine particles

    Chen, X.; J. Jiang; D.-R. Chen

    Journal of Aerosol Science, 2019, 133: 66-71

  73. Maximizing the singly charged fraction of sub-micrometer particles using a unipolar charger

    Chen, X.; J. Jiang; D.-R. Chen

    Aerosol Science and Technology, 2019, 53: 990-997

  74. Time-Resolved Intermediate-Volatility and Semivolatile Organic Compound Emissions from Household Coal Combustion in Northern China

    Cai, S.; L. Zhu; S. Wang; A. Wisthaler; Q. Li; J. Jiang; J. Hao

    Environmental Science & Technology, 2019, 53: 9269-9278

  75. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China

    Xu, Q.; S. Wang; J. Jiang; N. Bhattarai; X. Li; X. Chang; X. Qiu; M. Zheng; Y. Hua; J. Hao

    Science of The Total Environment, 2019, 689: 1293-1303

  76. Interactions between aerosol organic components and liquid water content during haze episodes in Beijing

    Li, X.; S. Song; W. Zhou; J. Hao; D.R. Worsnop; J. Jiang*

    Atmospheric Chemistry and Physics, 2019, 19: 12163-12174

  77. Improving thermal desorption aerosol gas chromatography using a dual-trap design

    Ren, H.; M. Xue; Z. An; J. Jiang*

    Journal of Chromatography A, 2019, 1599: 247-252

  78. Quartz filter-based thermal desorption gas chromatography mass spectrometry for in-situ molecular level measurement of ambient organic aerosols

    Ren, H.; M. Xue; Z. An; W. Zhou; J. Jiang*

    Journal of Chromatography A, 2019, 1589: 141-148

  79. Relative humidity effect on the formation of highly oxidized molecules and new particles during monoterpene oxidation

    Li, X.; S. Chee; J. Hao; J. P. D. Abbatt; J. Jiang*; J. N. Smith*

    Atmospheric Chemistry and Physics, 2019, 19: 1555-1570

  80. Characteristics of particulate matter from four coal-fired power plants with low-low temperature electrostatic precipitator in China

    Wang, G.; Z. Ma; J. Deng; Z. Li; L. Duan; Q. Zhang; J. Hao; J. Jiang*

    Science of the Total Environment, 2019, 662: 455-461

  81. Characteristics of Individual Particles Emitted from an Experimental Burning Chamber with Coal from the Lung Cancer Area of Xuanwei, China

    Wang, W.; L. Shao; J. Li; L. Chang; D. Zhang; C. Zhang; J. Jiang

    Aerosol and Air Quality Research, 2019, 19: 355-36

  82. Airway microbiome is associated with respiratory functions and responses to ambient particulate matter exposure

    Wang, L.; H. Cheng; D. Wang; B. Zhao; J. Zhang; L. Cheng; P. Yao; A. Di Narzo; Y. Shen; J. Yu; Y. Li; S. Xu; J. Chen; L. Fan; J. Lu; J. Jiang; Y. Zhou; C. Wang; Z. Zhang; K. Hao

    Ecotoxicology and Environmental Safety, 2019, 167: 269-277

  83. Development and qualification of a VH-TDMA for the study of pure aerosols

    Oxford, C. R.; C. M. Rapp; Y. Wang; P. Kumar; D. Watson; J. L. Portelli; E. A. Sussman; S. Dhawan; J. Jiang; B. J. Williams

    Aerosol Science and Technology, 2019, 53: 120-132

  84. A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing

    Lu, Y.; C. Yan; Y. Fu; Y. Chen; Y. Liu; G. Yang; Y. Wang; F. Bianchi; B. Chu; Y. Zhou; R. Yin; R. Baalbaki; O. Garmash; C. Deng; W. Wang; Y. Liu; T. Petaja; V.-M. Kerminen; J. Jiang; M. Kulmala; L. Wang

    Atmospheric Chemistry and Physics, 2019, 19: 1971-1983

  85. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis

    Li, Z.; H. He; H. Cao; S. Sun; W. Diao; D. Gao; P. Lu; S. Zhang; Z. Guo; M. Li; R. Liu; D. Ren; C. Liu; Y. Zhang; Z. Yang; J. Jiang; G. Zhang

    Applied Catalysis B: Environmental, 2019, 240: 112-121

  86. Significant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized products

    Li, Q.; J. Qi; J. Jiang*; J. Wu*; L. Duan; S. Wang; J. Hao

    Science of the Total Environment, 2019, 650: 653-660

  87. Bio(3)Air, an integrative system for monitoring individual-level air pollutant exposure with high time and spatial resolution

    Cheng, H.; L. Wang; D. Wang; J. Zhang; L. Cheng; P. Yao; Z. Zhang; A. Di Narzo; Y. Shen; J. Yu; C. Wang; L. Fan; J. Lu; J. Jiang; K. Hao

    Ecotoxicology and Environmental Safety, 2019, 169: 756-763

  88. Parameters governing the performance of electrical mobility spectrometers for measuring sub-3 nm particles

    Cai, R.; J. Jiang; S. Mirme; J. Kangasluoma

    Journal of Aerosol Science, 2019, 127: 102-115


    2018

  89. Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China

    Wang, G.; J. Deng; Z. Ma; J. Hao; J. Jiang*

    Science of the Total Environment, 2018, 639: 695-704

  90. Contribution of Hydroxymethane Sulfonate to Ambient Particulate Matter: A Potential Explanation for High Particulate Sulfur During Severe Winter Haze in Beijing

    Moch, J. M.; E. Dovrou; L. J. Mickley; F. N. Keutsch; Y. Cheng; D. J. Jacob; J. Jiang; M. Li; J. W. Munger; X. Qiao; Q. Zhang

    Geophysical Research Letters, 2018, 45: 11969-11979

  91. Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide

    Li, Z.; Y. Jiang; Z. Wang; W. Wang; Y. Yuan; X. Wu; X. Liu; M. Li; S. Dilpazir; G. Zhang; D. Wang; C. Liu; J. Jiang*

    Microchimica Acta, 2018, 185:501

  92. Emerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detection

    Li, Z.; Y. Jiang; C. Liu*; Z. Wang; Z. Cao; Y. Yuan; M. Li; Y. Wang; D. Fang; Z. Guo; D. Wang; G. Zhang; J. Jiang*

    Environmental Science: Nano, 2018, 5: 1834-1843

  93. Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China

    Hua, Y.; S. Wang; J. Jiang; W. Zhou; Q. Xu; X. Li; B. Liu; D. Zhang; M. Zheng

    Science of the Total Environment, 2018, 626: 519-527

  94. Insights into extinction evolution during extreme low visibility events: Case study of Shanghai, China

    Cheng, Z.; S. Wang; L. Qiao; H. Wang; M. Zhou; X. Fu; S. Lou; L. Luo; J. Jiang; C. Chen; X. Wang; J. Hao

    Science of the Total Environment, 2018, 618: 793-803

  95. Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers

    Chen, X.; P. H. McMurry; J. Jiang*

    Aerosol Science and Technology, 2018, 52: 809-813

  96. Performance of Small Plate and Tube Unipolar Particle Chargers at Low Corona Current

    Chen, X.; Q. Liu; J. Jiang; D.-R. Chen

    Aerosol and Air Quality Research, 2018, 18: 2005-2013

  97. Performance evaluation of a circular electrical aerosol classifier (CirEAC)

    Chen, X.; Q. Liu; J. Jiang; D.-R. Chen

    Journal of Aerosol Science, 2018, 118: 100-110

  98. Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications

    Chen, X.; J. Jiang*

    Aerosol Science and Technology, 2018, 52: 1145-1155

  99. Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier

    Cai, R.; D. Yang; L. R. Ahonen; L. Shi; F. Korhonen; Y. Ma; J. Hao; T. Petaja; J. Zheng; J. Kangasluoma; J. Jiang*

    Atmospheric Measurement Techniques, 2018, 11: 4477-4491

  100. Estimating the influence of transport on aerosol size distributions during new particle formation events

    Cai, R.; I. Chandra; D. Yang; L. Yao; Y. Fu; X. Li; Y. Lu; L. Luo; J. Hao; Y. Ma; L. Wang; J. Zheng; T. Seto; J. Jiang*

    Atmospheric Chemistry and Physics, 2018, 18: 16587-16599

  101. Characterization of a high-resolution supercritical differential mobility analyzer at reduced flow rates

    Cai, R.; M. Attoui; J. Jiang; F. Korhonen; J. Hao; T. Petaja; J. Kangasluoma

    Aerosol Science and Technology, 2018, 52: 1332-1343


    2017

  102. An optimized two-step derivatization method for analyzing diethylene glycol ozonation products using gas chromatography and mass spectrometry

    Yu, R.; L. Duan; J. Jiang*; J. Hao

    Journal of Environmental Sciences, 2017, 53: 313-321

  103. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates

    Xing, J.; J. Wang; R. Mathur; S. Wang; G. Sarwar; J. Pleim; C. Hogrefe; Y. Zhang; J. Jiang; D. C. Wong; J. Hao

    Atmos. Chem. Phys., 2017, 17: 9869-9883

  104. Six-day measurement of size-resolved indoor fluorescent bioaerosols of outdoor origin in an office

    Xie, Y.; O. A. Fajardo; W. Yan; B. Zhao*; J. Jiang*

    Particuology, 2017, 31: 161-169

  105. New particle formation in China: Current knowledge and further directions

    Wang, Z.; Z. Wu; D. Yue; D. Shang; S. Guo; J. Sun; A. Ding; L. Wang; J. Jiang; H. Guo; J. Gao; H. C. Cheung; L. Morawska; M. Keywood; M. Hu

    Science of The Total Environment, 2017, 577: 258-266

  106. Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes

    Wang, Y.; S. Bao; S. Wang; Y. Hu; X. Shi; J. Wang; B. Zhao; J. Jiang; M. Zheng; M. Wu; A. G. Russell; Y. Wang; J. Hao

    Science of The Total Environment, 2017, 580: 283-296

  107. Particulate matter pollution over China and the effects of control policies

    Wang, J.; B. Zhao; S. Wang; F. Yang; J. Xing; L. Morawska; A. Ding; M. Kulmala; V.-M. Kerminen; J. Kujansuu; Z. Wang; D. Ding; X. Zhang; H. Wang; M. Tian; T. Petäjä; J. Jiang; J. Hao

    Science of The Total Environment, 2017, 584-585: 426-447

  108. Nascent soot particle size distributions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flame

    Tang, Q.; R. Cai; X. You*; J. Jiang*

    Proceedings of the Combustion Institute, 2017, 36: 993-1000

  109. Biocoal Briquettes Combusted in a Household Cooking Stove: Improved Thermal Efficiencies and Reduced Pollutant Emissions

    Qi, J.; Q. Li; J. Wu*; J. Jiang*; Z. Miao; D. Li

    Environmental Science & Technology, 2017, 51: 1886-1892

  110. PM2.5 Emission Reduction by Technical Improvement in a Typical Coal-Fired Power Plant in China

    Ma, Z.; Z. Li; J. Jiang; J. Deng; Y. Zhao; S. Wang; L. Duan

    Aerosol and Air Quality Research, 2017, 17: 636-643

  111. Impacts of coal burning on ambient PM2.5 pollution in China

    Ma, Q.; S. Cai; S. Wang; B. Zhao; R. V. Martin; M. Brauer; A. Cohen; J. Jiang; W. Zhou; J. Hao; J. Frostad; M. H. Forouzanfar; R. T. Burnett

    Atmos. Chem. Phys., 2017, 17: 4477-4491

  112. Performance calibration of low-cost and portable particular matter (PM) sensors

    Liu, D.; Q. Zhang; J. Jiang; D.-R. Chen

    Journal of Aerosol Science, 2017, 112: 1-10

  113. Boron Doped ZIF-67@Graphene Derived Carbon Electrocatalyst for Highly Efficient Enzyme-Free Hydrogen Peroxide Biosensor

    Li, Z.; W. Wang; H. Cao; Q. Zhang; X. Zhou; D. Wang; Y. Wang; S. Zhang; G. Zhang; C. Liu; Y. Zhang; R. Liu*; J. Jiang*

    Advanced Materials Technologies, 2017, 2: 1700224

  114. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR)

    Li, Z.; J. Jiang; Z. Ma; O. A. Fajardo; J. Deng; L. Duan

    Environmental Pollution, 2017, 230: 655-662

  115. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication

    Li, Q.; J. Jiang*; S. X. Wang; K. Rumchev; R. Mead-Hunter; L. Morawska; J. M. Hao

    Science of the Total Environment, 2017, 576: 347-361

  116. Comparison of nanoparticle generation by two plasma techniques: Dielectric barrier discharge and spark discharge

    Jiang, L.; Q. Li; D. Zhu; M. Attoui; Z. Deng; J. Tang; J. Jiang*

    Aerosol Science and Technology, 2017, 51: 206-213

  117. Modeling biogenic and anthropogenic secondary organic aerosol in China

    Hu, J.; P. Wang; Q. Ying; H. Zhang; J. Chen; X. Ge; X. Li; J. Jiang; S. Wang; J. Zhang; Y. Zhao; Y. Zhang

    Atmos. Chem. Phys., 2017, 17: 77-92

  118. Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China

    Cheng, Z.; X. Ma; Y. He; J. Jiang*; X. Wang; Y. Wang*; L. Sheng; J. Hu; N. Yan

    Environmental Research, 2017, 156: 239-246

  119. Aerosol surface area concentration: a governing factor in new particle formation in Beijing

    Cai, R.; D. Yang; Y. Fu; X. Wang; X. Li; Y. Ma; J. Hao; J. Zheng*; J. Jiang*

    Atmos. Chem. Phys., 2017, 17: 12327-12340

  120. A new balance formula to estimate new particle formation rate: reevaluating the effect of coagulation scavenging

    Cai, R.; J. Jiang*

    Atmos. Chem. Phys., 2017, 17: 12659-12675

  121. A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing

    Cai, R.; D.-R. Chen; J. Hao; J. Jiang*

    Journal of Aerosol Science, 2017, 106: 111-119


    2016

  122. Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process

    Zhou, W.; J. Jiang*; L. Duan; J. Hao

    Environmental Science & Technology, 2016, 50: 7861-7869

  123. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies

    Ma, Z.; J. Deng; Z. Li; Q. Li; P. Zhao; L. Wang; Y. Sun; H. Zheng; L. Pan; S. Zhao; J. Jiang*; S. Wang; L. Duan*

    Atmospheric Environment, 2016, 131: 164-170

  124. A spectrometer for measuring particle size distributions in the range of 3 nm to 10 μm

    Liu, J.; J. Jiang*; Q. Zhang; J. Deng; J. Hao

    Frontiers of Environmental Science & Engineering, 2016, 10: 63-72

  125. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China

    Li, Q.; X. Li; J. Jiang*; L. Duan; S. Ge; Q. Zhang; J. Deng; S. Wang; J. Hao*

    Scientific Reports, 2016, 6: 19306

  126. Influences of coal size, volatile matter content, and additive on primary particulate matter emissions from household stove combustion

    Li, Q.; J. Jiang*; Q. Zhang; W. Zhou; S. Cai; L. Duan; S. Ge; J. Hao

    Fuel, 2016, 182: 780-787

  127. Improving the Energy Efficiency of Stoves To Reduce Pollutant Emissions from Household Solid Fuel Combustion in China

    Li, Q.; J. Jiang*; J. Qi; J. Deng; D. Yang; J. Wu; L. Duan; J. Hao

    Environmental Science & Technology Letters, 2016, 3: 369-374

  128. Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies

    Li, Q.; J. Jiang*; S. Cai; W. Zhou; S. Wang; L. Duan; J. Hao

    Environmental Science & Technology Letters, 2016, 3: 98-103

  129. Investigating the impact of regional transport on PM2.5 formation using vertical observation during APEC 2014 Summit in Beijing

    Hua, Y.; S. Wang; J. Wang; J. Jiang; T. Zhang; Y. Song; L. Kang; W. Zhou; R. Cai; D. Wu; S. Fan; T. Wang; X. Tang; Q. Wei; F. Sun; Z. Xiao

    Atmos. Chem. Phys., 2016, 16: 15451-15460

  130. Continuous Measurement of Ambient Aerosol Liquid Water Content in Beijing

    Fajardo, O. A.; J. Jiang*; J. Hao

    Aerosol and Air Quality Research, 2016, 16: 1152-1164

  131. Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth

    Chu, B.; X. Zhang; Y. Liu; H. He; Y. Sun; J. Jiang; J. Li; J. Hao

    Atmos. Chem. Phys., 2016, 16: 14219-14230

  132. Status and characteristics of ambient PM2.5 pollution in global megacities

    Cheng, Z.; L. Luo; S. Wang; Y. Wang; S. Sharma; H. Shimadera; X. Wang; M. Bressi; R. M. de Miranda; J. Jiang; W. Zhou; O. Fajardo; N. Yan; J. Hao

    Environment International, 2016, 89-90: 212-221


    2015

  133. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities

    Jiang, W.; P. Liang; B. Wang; J. Fang; J. Lang; G. Tian; J. Jiang; T. F. Zhu

    Nature Protocols, 2015, 10: 768

  134. Characteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement

    Zheng, X.; Y. Wu; J. Jiang; S. Zhang; H. Liu; S. Song; Z. Li; X. Fan; L. Fu; J. Hao

    Environmental Science & Technology, 2015, 49: 13492-13500

  135. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement

    Wang, Y.; J. Li; H. Jing; Q. Zhang; J. Jiang; P. Biswas

    Aerosol Science and Technology, 2015, 49: 1063-1077

  136. Assessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, China

    Wang, J.; S. Wang; A. S. Voorhees; B. Zhao; C. Jang; J. Jiang; J. S. Fu; D. Ding; Y. Zhu; J. Hao

    Atmospheric Environment, 2015, 123, Part B: 440-448

  137. Impacts of load mass on real-world PM1 mass and number emissions from a heavy-duty diesel bus

    Wang, C.; Y. Wu; J. Jiang; S. Zhang; Z. Li; X. Zheng; J. Hao

    International Journal of Environmental Science and Technology, 2015, 12: 1261-1268

  138. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Li, Z.; J. Jiang; Z. Ma; S. Wang; L. Duan

    Atmospheric Environment, 2015, 120: 227-233

  139. Improving the Removal Efficiency of Elemental Mercury by Pre-Existing Aerosol Particles in Double Dielectric Barrier Discharge Treatments

    Li, Q.; J. Jiang*; L. Duan; J. Deng; L. Jiang; Z. Li; J. Hao

    Aerosol Air Qual. Res., 2015, 15: 1506-1513

  140. A Review of Aerosol Nanoparticle Formation from Ions

    Li, Q.; J. Jiang*; J. Hao

    Kona Powder and Particle Journal, 2015, 57-74

  141. Particulate Matter Distributions in China during a Winter Period with Frequent Pollution Episodes (January 2013)

    Jiang*, J.; W. Zhou; Z. Cheng; S. Wang; K. He; J. Hao

    Aerosol and Air Quality Research, 2015, 15: 494-503

  142. Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China

    Hua, Y.; Z. Cheng; S. Wang; J. Jiang; D. Chen; S. Cai; X. Fu; Q. Fu; C. Chen; B. Xu; J. Yu

    Atmospheric Environment, 2015, 123: 380-391

  143. Estimation of Aerosol Mass Scattering Efficiencies under High Mass Loading: Case Study for the Megacity of Shanghai, China

    Cheng, Z.; J. Jiang*; C. Chen; J. Gao; S. Wang*; J. G. Watson; H. Wang; J. Deng; B. Wang; M. Zhou; J. C. Chow; M. L. Pitchford; J. Hao

    Environmental Science & Technology, 2015, 49: 831–838


    2014

  144. Enhanced sulfate formation during China's severe winter haze episode in January 2013 missing from current models

    Wang, Y.; Q. Zhang; J. Jiang; W. Zhou; B. Wang; K. He; F. Duan; Q. Zhang; S. Philip; Y. Xie

    Journal of Geophysical Research: Atmospheres, 2014, 119: 2013JD021426

  145. Impact of aerosol-meteorology interactions on fine particle pollution during China's severe haze episode in January 2013

    Wang, J. D.; S. X. Wang; J. Jiang; A. J. Ding; M. Zheng; B. Zhao; D. C. Wong; W. Zhou; G. J. Zheng; L. Wang; J. E. Pleim; J. M. Hao

    Environmental Research Letters, 2014, 9: 094002

  146. Ultrafine particle emissions from essential-oil-based mosquito repellent products

    Liu, J.; D. Fung; J. Jiang*; Y. Zhu*

    Indoor Air, 2014, 24: 327-335

  147. Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate

    Jiang*, J.; C. Kim; X. Wang; M. R. Stolzenburg; S. L. Kaufman; C. Qi; G. J. Sem; H. Sakurai; N. Hama; P. H. McMurry

    Aerosol Science and Technology, 2014, 48: 1207-1216

  148. Hygroscopicity of particles generated from photooxidation of alpha-pinene under different oxidation conditions in the presence of sulfate seed aerosols

    Chu, B. W.; K. Wang; H. Takekawa; J. H. Li; W. Zhou; J. Jiang; Q. X. Ma; H. He; J. M. Hao

    Journal of Environmental Sciences, 2014, 26: 129-139

  149. Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in α-pinene photooxidation

    Chu, B.; Y. Liu; J. Li; H. Takekawa; J. Liggio; S.-M. Li; J. Jiang; J. Hao; H. He

    Environmental Pollution, 2014, 193: 88-93

  150. Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011

    Cheng, Z.; S. Wang; X. Fu; J. G. Watson; J. Jiang; Q. Fu; C. Chen; B. Xu; J. Yu; J. C. Chow; J. Hao

    Atmospheric Chemistry and Physics, 2014, 14: 4573-4585

  151. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event

    Cao, C.; W. Jiang; B. Wang; J. Fang; J. Lang; G. Tian*; J. Jiang*; T. F. Zhu*

    Environmental Science & Technology, 2014, 48: 1499-1507


    2013

  152. Assessing Young People’s Preferences in Urban Visibility in Beijing

    Fajardo, O. A.; J. Jiang*; J. Hao*

    Aerosol and Air Quality Research, 2013, 13: 1536-1543

  153. Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation

    Chu, B.; J. Hao; J. Li; H. Takekawa; K. Wang; J. Jiang

    Frontiers of Environmental Science & Engineering, 2013, 7: 1-9

  154. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China

    Cheng, Z.; S. Wang; J. Jiang; Q. Fu; C. Chen; B. Xu; J. Yu; X. Fu; J. Hao

    Environmental Pollution, 2013, 182: 101-110

  155. Characteristics and health impacts of particulate matter pollution in China (2001–2011)

    Cheng, Z.; J. Jiang*; O. Fajardo; S. Wan; J. Hao*

    Atmospheric Environment, 2013, 65: 186-194


    2012

  156. Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China

    Zhang, H.; S. Wang; J. Hao; L. Wan; J. Jiang; M. Zhang; H. E. S. Mestl; L. W. H. Alnes; K. Aunan; A. W. Mellouki

    Atmospheric Environment, 2012, 51: 94-99

  157. Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model

    Zhang, H.; J. Li; Q. Ying; J. Z. Yu; D. Wu; Y. Cheng; K. He; J. Jiang

    Atmospheric Environment, 2012, 62: 228-242

  158. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    Wiedensohler, A.; W. Birmili; A. Nowak; A. Sonntag; K. Weinhold; M. Merkel; B. Wehner; T. Tuch; S. Pfeifer; M. Fiebig; A. M. Fjaraa; E. Asmi; K. Sellegri; R. Depuy; H. Venzac; P. Villani; P. Laj; P. Aalto; J. A. Ogren; E. Swietlicki; P. Williams; P. Roldin; P. Quincey; C. Huglin; R. Fierz-Schmidhauser; M. Gysel; E. Weingartner; F. Riccobono; S. Santos; C. Gruning; K. Faloon; D. Beddows; R. Harrison; C. Monahan; S. G. Jennings; C. D. O'Dowd; A. Marinoni; H. G. Horn; L. Keck; J. Jiang; J. Scheckman; P. H. McMurry; Z. Deng; C. S. Zhao; M. Moerman; B. Henzing; G. de Leeuw; G. Loschau; S. Bastian

    Atmospheric Measurement Techniques, 2012, 5: 657-685

  159. Chemical characteristics of size-resolved PM2.5 at a roadside environment in Beijing, China

    Song, S.; Y. Wu; J. Jiang; L. Yang; Y. Cheng; J. Hao

    Environmental Pollution, 2012, 161: 215-221

  160. Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data

    Han, X.; N. Corson; P. Wade-Mercer; R. Gelein; J. Jiang; M. Sahu; P. Biswas; J. N. Finkelstein; A. Elde; G. Oberdörster

    Toxicology, 2012, 297: 1-9

  161. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx

    Chu, B.; J. Hao; H. Takekawa; J. Li; K. Wang; J. Jiang

    Atmospheric Environment, 2012, 55: 26-34

  162. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    Chen, M.; M. Titcombe; J. Jiang; C. Jen; C. Kuang; M. L. Fischer; F. L. Eisele; J. I. Siepmann; D. R. Hanson; J. Zhao; P. H. McMurry

    PNAS, 2012, 109: 18713-18718


    2011

  163. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties

    Suttiponparnit, K.; J. Jiang; M. Sahu; S. Suvachittanont; T. Charinpanitkul; P. Biswas

    Nanoscale Research Letters, 2011, 6:

  164. First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events

    Jiang*, J.; J. Zhao; M. Chen; F. L. Eisele; J. Scheckman; B. J. Williams; C. Kuang; P. H. McMurry

    Aerosol Science and Technology, 2011, 45: ii-v

  165. Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm

    Jiang*, J.; M. Chen; C. Kuang; M. Attoui; P. H. McMurry

    Aerosol Science and Technology, 2011, 45: 510 - 521

  166. Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification

    Jiang, J.; M. Attoui; M. Heim; N. A. Brunelli; P. H. McMurry; G. Kasper; R. C. Flagan; K. Giapis; G. Mouret

    Aerosol Science and Technology, 2011, 45: 480 - 492

  167. Ambient Pressure Proton Transfer Mass Spectrometry: Detection of Amines and Ammonia

    Hanson, D. R.; P. H. McMurry; J. Jiang; D. Tanne; L. G. Huey

    Environmental Science & Technology, 2011, 45: 8881-8888

  168. Validation of an LDH assay for assessing nanoparticle toxicity

    Han, X.; R. Gelein; N. Corson; P. Wade-Mercer; J. Jiang; P. Biswas; J. N. Finkelstein; A. Elder; G. Oberdörster

    Toxicology, 2011, 287: 99-104


    2010 and before

  169. Concept of Assessing Nanoparticle Hazards Considering Nanoparticle Dosemetric and Chemical/Biological Response Metrics

    Rushton, E. K.; J. Jiang; S. S. Leonard; S. Eberly; V. Castranova; P. Biswas; A. Elder; X. Han; R. Gelein; J. Finkelstein; G. Oberdorster

    Journal of Toxicology and Environmental Health, Part A, 2010, 73: 445 - 461

  170. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

    Jiang, J.;G. Oberdörster; P. Biswas

    Journal of Nanoparticle Research, 2009, 11: 77-89

  171. Synthesis of visible light-active nanostructured TiOx (x < 2) photocatalysts in a flame aerosol reactor

    Dhumal, S. Y.; T. L. Daulton; J. Jiang; B. Khomami; P. Biswas

    Applied Catalysis B: Environmental, 2009, 86: 145-151

  172. Crystal structure mediates mode of cell death in TiO2 nanotoxicity

    Braydich-Stolle; L. K., N. M. Schaeublin; R. C. Murdock; J. Jiang; P. Biswas; J. J. Schlager; S. M. Hussain

    Journal of Nanoparticle Research, 2009, 11: 1361-1374

  173. Quench-Ring Assisted Flame Synthesis of SiO2-TiO2 Nanostructured Composite

    Worathanakul, P.; J. Jiang; P. Biswas; P. Kongkachuichay

    Journal of Nanoscience and Nanotechnology, 2008, 8: 6253-6259

  174. One-step synthesis of noble metal-titanium dioxide nanocomposites in a flame aerosol reactor

    Tiwari, V.; J. Jiang; V. Sethi; P. Biswas

    Applied Catalysis A: General, 2008, 345: 241-246

  175. Charged fraction and electrostatic collection of ultrafine and submicrometer particles formed during O2-CO2 coal combustion

    Suriyawong, A.; C. J. Hogan; J. Jiang; P. Biswas

    Fuel, 2008, 87: 673-682

  176. Does nanoparticle activity depend upon size and crystal phase?

    Jiang, J.; G. Oberdörster; A. Elder; R. Gelein; P. Mercer; P. Biswas

    Nanotoxicology, 2008, 2: 33 - 42

  177. Model for nanoparticle charging by diffusion, direct photoionization, and thermionization mechanisms

    Jiang, J.; M. H. Lee; P. Biswas

    Journal of Electrostatics, 2007, 65: 209-220

  178. Aerosol charging and capture in the nanoparticle size range (6-15 nm) by direct photoionization and diffusion mechanisms

    Jiang, J.; C. J. Hogan; D. R. Chen; P. Biswas

    Journal of Applied Physics, 2007, 102: 034904

  179. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    Jiang, J.; D. R. Chen; P. Biswas

    Nanotechnology, 2007, 18: 285603

  180. Trends in anthropogenic mercury emissions in China from 1995 to 2003

    Wu, Y.; S. X. Wang; D. G. Streets; J. M. Hao; M. Chan; J. Jiang

    Environmental Science & Technology, 2006, 40: 5312-5318

  181. Anthropogenic mercury emissions in China

    Streets, D. G.; J. M. Hao; Y. Wu; J. Jiang; M. Chan; H. Z. Tian; X. B. Feng

    Atmospheric Environment, 2005, 39: 7789-7806


中文文章

  1. 李晓晓, 蒋靖坤, 王东滨, 葛茂发, 郝吉明. 大气超细颗粒物来源及其化学组分研究进展. 环境化学, 2021, 40(10): 2947-2959.

  2. 李雪, 蒋靖坤*, 王东滨, 邓建国, 贺克斌, 郝吉明. 冠状病毒气溶胶传播及环境影响因素. 环境科学, 2021, 42(7): 3091-3098.

  3. 王东滨, 薛墨, 陈小彤, 蒋靖坤*. 一种新型软X射线气溶胶荷电器的开发与评测. 大气与环境光学学报, 2020, 15(06): 429-437.

  4. 张莹,邓建国,王刚,李妍菁,续鹏, 蒋靖坤*,典型钢铁焦化厂可凝结颗粒物排放特征,环境工程,2020, 38(09): 154-158.

  5. 邓建国, 张莹, 王乐冰, 李妍菁, 段雷, 郝吉明, 蒋靖坤*,测量固定源可凝结颗粒物的稀释间接法及系统,环境科学学报,2020,40(11):4162-4168.

  6. 楚碧武, 马庆鑫, 段凤魁, 马金珠, 蒋靖坤, 贺克斌, 贺泓. 大气“霾化学”:概念提出和研究展望. 化学进展, 2020, 32: 1-4.

  7. 蒋靖坤*,邓建国,王刚,张莹,李妍菁,段雷,郝吉明.固定污染源可凝结颗粒物测量方法.环境科学, 2019, 40(12): 5234-5239.

  8. 王东滨, 郝吉明, 蒋靖坤*. 民用固体燃料燃烧超细颗粒物排放及其潜在健康影响. 科学通报, 2019, 64: 3429.

  9. 薛墨,傅月芸,蔡润龙,蒋靖坤*,郝吉明.1~3 nm颗粒物在粒径分布测量仪中的通过效率研究.环境科学学报,2019,39(9):2896-2902.

  10. 邓建国,马子轸,李振,段雷,蒋靖坤*.不同湿法脱硫工艺对燃煤电厂PM2.5排放的影响.环境科学,2019,40(8):3457-3462.

  11. 姚群, 柳静献, 蒋靖坤. 钢铁窑炉烟尘细颗粒物超低排放技术与装备. 中国环保产业, 2018, 6: 39 – 43.

  12. 闫威卓, 王步英, Oscar Fajardo, 蒋靖坤*, 郝吉明. 北偏西大风对北京冬季生物气溶胶的影响. 环境科学, 2017, 38(9): 3561-3568.

  13. 李晓晓, 张强, 邓建国, 蒋靖坤*, 郝吉明. 用于滤膜称重的饱和氯化镁溶液恒湿系统搭建与评估. 环境科学, 2017, 38(8): 3095-3101.

  14. 李庆, 段雷, 蒋靖坤*, 王书肖, 郝吉明. 我国民用燃煤一次颗粒物的减排潜力研究. 中国电机工程学报, 2016, 16: 4408-4414

  15. 樊筱筱, 蒋靖坤*, 吴烨, 张强, 李振华, 段雷. 不同稀释条件与测量技术下缸内直喷汽车排放颗粒物数浓度和粒径分布特征. 中国电机工程学报,2016, 16

  16. 赵承美, 邵龙义, 蒋靖坤, 段雷, 李庆, 王文华. 民用煤燃烧排放PM2.5的微观形貌和化学组分. 中国电机工程学报,2016, 16

  17. 樊筱筱, 蒋靖坤*, 张强, 李振华, 何立强, 吴烨, 胡京南, 郝吉明. 轻型汽油车排放颗粒物数浓度和粒径分布特征. 环境科学,2016, 37(10): 3743-3749

  18. 蒋靖坤*, 邓建国, 李振, 马子轸, 周伟, 张强, 段雷, 郝吉明. 双级虚拟撞击采样器应用于固定污染源PM10和PM2.5排放测量. 环境科学,2016, 37(6): 2003-2007

  19. 张琦, 李庆, 蒋靖坤*, 邓建国, 段雷, 郝吉明. 一套民用固体燃料燃烧大气污染物排放测试系统的搭建和评测. 环境科学学报,2016,36:3393-3399

  20. 陈小彤, 蒋靖坤*, 邓建国, 李庆, 段雷,郝吉明. 一种气溶胶测量仪器标定系统的设计及性能评估. 环境科学,2016, 37(3): 789-794

  21. 马子轸, 李振, 蒋靖坤, 叶芝祥, 邓建国, 段雷. 燃煤电厂产生和排放的PM2.5中水溶性离子特征. 环境科学, 2015, 36(7):2361-2366

  22. 王步英, 郎继东, 张丽娜, 方剑火, 曹晨, 郝吉明, 朱听, 田埂*, 蒋靖坤*. 基于16S rRNA基因测序法分析的北京霾污染过程PM2.5和PM10中细菌群落特征. 环境科学, 2015, 36(8): 2727-2734

  23. 李兴华, 曹阳, 蒋靖坤, 段雷, 邓建国, 张强, 韩军赞. 固定源PM2.5稀释采样器的研制. 环境科学学报, 2015, 10: 3309-3315

  24. 段雷, 马子轸, 李振, 蒋靖坤, 叶芝祥. 燃煤电厂排放细颗粒物的水溶性无机离子特征综述. 环境科学, 2015, 36(3): 1117-1122

  25. 蒋靖坤*, 邓建国, 段雷, 张强, 李振, 陈小彤, 李兴华, 郝吉明. 基于虚拟撞击原理的固定源PM10/PM2.5采样器的研制. 环境科学, 2014, 35(10): 3639-3643.

  26. 蒋靖坤*, 邓建国, 李振, 李兴华, 段雷, 郝吉明. 固定污染源排气中PM2.5采样方法综述. 环境科学, 2014,35(5): 2018-2024.

  27. 麦华俊, 蒋靖坤*, 何正旭, 郝吉明. 一种纳米气溶胶发生系统的设计及性能测试. 环境科学, 2013,34: 2950-2954

  28. 宋少洁, 吴烨, 蒋靖坤, 杨柳, 郝吉明. 北京市典型道路交通环境细颗粒物元素组成及分布特征. 环境科学学报, 2012,32: 66-73.

  29. 王书肖, 刘敏,蒋靖坤, 郝吉明, 吴烨, David G.Streets. 中国非燃煤大气汞排放量估算. 环境科学, 2006, 27: 2401-2406.

  30. 蒋靖坤, 郝吉明, 吴烨, David G. Streets, 段雷, 田贺忠. 中国燃煤汞排放清单的初步建立. 环境科学, 2005, 26: 34-39.


已毕业员工

沈毅成,2021,中国环境科学研究院,工作

乔晓慧,2021,深圳麦克韦尔股份有限公司,工作

安肇锦,2021,bat365官方网页版,博士后

金玟呈,2021,Ministry of Environment Republic of Korea, 工作

赵佳鹏,2021,中国医学科学院,读博

李泽晖,2020,北京大学物理学院,博士后(博雅计划)

李晓晓,2020,bat365官方网页版,博士后(水木学者)

李妍菁,2020,奥园集团有限公司,工作

马子轸,2020,青岛理工大学,副教授

花国诚,2020,埃睿迪信息技术有限公司,工作

张莹,2020,冶金工业规划研究院,工作

蔡润龙,2019,University of Helsinki,博士后

陈小彤,2019,全球能源互联网集团,工作

薛墨,2019,深圳麦克韦尔股份有限公司,工作

傅月芸,2019,宝洁中国,工作

王刚,2019,中国石油大学(华东),副教授

任海霞,2019,EPC Natural Products Co., 工作

王亚玲,2019,北京市环境保护科学研究院,工作

李雨阳,2019,bat365官方网页版,读博

李怡然,2019,bat365官方网页版,读博

姜月,2019,bat365官方网页版,工作

张晨翀,2017,Washington University in St. Louis,读博

赵天宁,2017,Harvard University,读博

李振,2017,Virginia Commonwealth University, 博士后

闫威卓,2017,中冶节能环保有限责任公司,工作

吴欣尔,2017,bat365官方网页版,读硕

王浩,2017,bat365官方网页版,读博

李妍菁,2017,bat365在线平台app深圳研究生院,读硕

周伟,2017,北京雪迪龙科技股份有限公司,工作

Oscar Farjardo, 2016, Universidad Central, 副教授

李庆,2016,复旦大学,青年研究员

王宏恩,2016,Casella公司,工作

Marie Larivoire, 2016, mc2i groupe, 工作

樊筱筱,2016,深圳市高新投集团有限公司,工作

姜仑,2016,UC Berkeley,读硕

于然,2015,同方集团,工作

王步英,2015,北京市环境保护监测中心,工作

张琦,2015,Stanford University,读硕

刘洁琼,2014,西北设计院,工作

李佳育,2014,Washington University in St. Louis, 读博

李晨曦,2014,University of Minnesota,读博

麦华俊,2013,Caltech,读博

刘俊,2013,UC San Diego,读博

吕晓佟,2013,Virginia Tech, 读博

骆锋,2012,道达尔集团(TOTAL),工作

何正旭,2012,bat365在线平台app地学中心,读硕

彭来,2011,北京大学光华管理学院,读硕

(课题组有本科生、硕士生、博士生和博士后开展科学研究的岗位,请联系:jiangjk@tsinghua.edu.cn)